
A conception of computing technology better suited to distributed

participatory design

Meurig Beynon Zhan En Chan
wmb@dcs.warwick.ac.uk echan@dcs.warwick.ac.uk

Department of Computer Science, University of Warwick
Conventry CV4 7AL, United Kingdom

Abstract

Distributed participatory design aspires to standards
of inclusivity and humanity in introducing technology
to the workplace that are hard to attain. The demands
it makes upon the development and use of computing
technology are particularly topical, as the potential for
automation and distribution through embedded and
mobile devices continues to develop. Standard views
of computation propose ways in which to interpret all
products of computing as programs, but give limited
conceptual support for understanding computer-based
design artefacts whose role in communication and elab-
oration eludes capture in a functional specification.
This motivates our brief account of the alternative con-
ceptual framework for computing afforded by Empiri-
cal Modelling, a body of principles and tools that can
be applied to the development of a variety of computer-
based artefacts relating to analysis, design and use that
are most appropriately interpreted as construals rather
than programs. The paper concludes by hinting at
some of the ways in which developing construals using
Empirical Modelling can assist distributed participa-
tory design.

1 Introduction

Distributed participatory design (DPD) is concerned
with design processes in which the stakeholders have
different levels of expertise and competence and are lo-
cated in different environments. The priority for this
activity, as identified by Crabtree [7], is the creative
use of technology to improve working practices in such
a way that it does not destroy the workers’ skills, does
not take away their autonomy, and enhances their qual-
ity of life. Where the introduction of technology is con-
cerned, DPD poses specific major technical challenges:

• Integrating the human and the technological:
DPD demands an intimate integration of the tech-
nological infrastructure with human activities. As
illustrated in Crabtree’s account of the UTOPIA
project [5], the level of automation may not in fact
be high; finding the most effective role for automa-
tion does not necessarily involve making radical
changes to existing workpractices.

• Enabling flexibility and evolution: DPD requires
development techniques that make it possible to
shape technology in a flexible and open-ended
manner. Since participatory design engages with
the entire development lifecycle (cf. [10]), it
should ideally be possible to take the perspectives
of analysts, developers and users into account.
This favours a conception of technology that is
evolutionary in nature and accomodates elements
of customisation and on-the-fly modification.

• Supporting diverse interaction and communica-
tion: DPD highlights the role of technology in
support of human interaction and communication
rather than simply as a means to achieve goals
in ways that are more efficient and cost-effective.
The type of interaction and communication to be
supported has also to be highly diverse. For in-
stance, in addition to providing support for the
workpractices to be implemented, it should also
enable the role-shifting and exploratory investiga-
tion involved in the development, where all stake-
holders have an interest.

The primary focus of this paper is on the impact
that two different underlying conceptions of computing
technology have on distributed participatory design. In
the sections which follow, our objective is

• to highlight ways in which a traditional conception
of computing technology obstructs the integration
of human and computer-based activities in sup-
port of DPD;

• to outline an alternative conception of computing
that offers principles and tools much better aligned
to the emerging practice and aspirations in DPD.

2 Duality in the conception of
computing technology

The traditional way in which computing applications
are conceptualized has deep historical roots. In using
a computer as a calculator or data processor it is en-
tirely appropriate to think in terms of categories such
as: articulating the requirement and identifying it as

1



a computable function; specifying this function in ab-
stract high-level terms that can be understood by the
programmer; translating this into code that can be in-
terpreted by the machine; devising a protocol by which
the user can supply parameters to the function and be
presented with an output. The range of applications for
computing has of course changed radically since such
input-output processing was the dominating practical
concern, but there has been no comparable conceptual
shift in “understanding the fundamental nature of com-
puting”. This is not an issue that is of sole concern to
the computer scientist; the pervasive role of comput-
ing, and the limited nature of our conceptual grasp, has
arguably had a broad impact on our understanding of
systems that combine human and automated agency.

The traditional conception of computer program is par-
ticularly ill-suited to the technological challenges in
DPD, as identified in the introduction:

• Integrating the human and the technological? In
the classical view, an executing program is a
means to an end in carrying out a computation –
human activity and programs intersect at precon-
ceived rendezvous points for stereotypical input-
output interaction. At these points, the human
has to act in highly constrained preconceived role
as a ‘user’. Activities such as “interrupting the
program execution”, or “modifying an executing
program” are outside the conceptual scope.

• Enabling flexibility and evolution? In the classical
view, the program requirement, its specification,
its code and its user interface are different species,
each with its own specialist human interpreter –
the analyst, the designer, the programmer and the
user. The fundamental idea behind the classical
program is that once its function has been clar-
ified and specified, every possible ingenuity and
optimisation can be exercised in carrying out this
function, thus saving computer system resources
and user time. If you change the requirement,
you may well need to ditch the existing program,
since ingenuity and optimisation is typically highly
function-specific.

• Supporting diverse interaction and communica-
tion? The classical program is intended to sup-
port a black-box style interaction. It is not con-
sidered important for the user to understand what
the program is doing internally, nor for the pro-
grammer to know what the user is doing beyond
awaiting the computation of a specific function as
mediated through a specific interface. Within the
classical framework, it is possible to imitate cross-
over interaction between different species of pro-
gram specialist – for instance, to allow the user
to adapt their interface, or customise the program
execution for another user. But in so far as a com-
puting application is viewed as a program, it has a
fixed function that determines the way in which re-
lationship between its execution and its surround-

ing context is to be interpreted, and this limits its
expressed potential for communication.

The fact that the classical program, as represented
above, is no more than a parody for what modern soft-
ware technology discloses is not the issue. Of course,
advanced user interfaces and interface devices, data-
bases, spreadsheets, agent technologies and the like
have raised entirely new logistic, experiential and real-
time issues that have transformed practice. Ways of
thinking about computing technology are quite as in-
fluential as – if not more influential than – the tech-
nologies themselves. The influence of goal-orientation
and programmed interaction remains prominent in re-
search fields such as CSCW, user-centred design and
agile development. It promotes a pernicious duality
that separates the users of an application from its de-
velopers and partitions the life-cycle into distinct kinds
of activity that are hard to integrate. This is in conflict
with one of the central notion of DPD: that of treat-
ing workers as total human beings rather than merely
users.

In dissolving the duality at the heart of classical think-
ing about computing, it is helpful to consider the dis-
tinction between two kinds of activity:

• identifying the potential users and functionalities
for an application;

• gaining familiarity and understanding in the do-
main in which an application is to operate.

The concept of gaining familiarity with a domain is
broader and more general than the identification of
applications and users – it may not even presume any
pre-existing notion of “user” or “application”. It is
also clear that the context for performing a task can
be configured in such a way that its execution requires
very little understanding of the domain. Indeed, as
discussed at length in [9], the importance of context
in relation to task is a profound and long-established
strand in Chinese thought that finds its expression in
the concept of shi as an“inherent potentiality at work
in configuration” ([9], p.14). The computer program-
ming context can be regarded as an archetypal con-
text that is contrived so that effective and meaningful
action can be mediated by what Bornat describes as
“completely meaningless” programs [6].

Two quite different viewpoints on design activity are
highlighted here. One puts its primary emphasis on
clarifying the tasks to be carried out and bringing max-
imal ingenuity to bear on their efficient implementation
through automation. The other focuses instead upon
a less goal-oriented exploration of the potentialities
within the domain of application. The first approach is
associated with the traditional conceptual framework
that leads from requirements analysis of the workplace
to specification, identification of function, implemen-
tation and maintenance. This framework involves an
explicit framing of the notions of users and roles. The
second approach involves a more open-ended holistic

2



investigation of the application domain that cannot be
decomposed into conceptually distinct formal phases.
In this approach, the configuration of the application
context, the nature of the problems to be addressed,
and the roles for users and automation emerge in par-
allel.

3 Empirical Modelling

Empirical Modelling (EM) is a body of principles and
tools that has been developed to support a conceptu-
ally different way of thinking about computing activity
that is oriented towards a more holistic approach to
design. Its primary emphasis is on studying disposi-
tions within a situation and creating configurations to
exploit these, rather than identifying and implement-
ing functions to achieve pre-specified goals (cf. [3]).
To this end, it involves the development of computer-
based artefacts that are more appropriately interpreted
as construals than programs. That is to say, they are
constructions made by the modeller that embody char-
acteristic features of a situation that – like dispositions
– are revealed through interaction.

In the DPD context, EM can be viewed as developing
interactive situation models (ISMs) that help to cap-
ture and convey personal understanding of situations
or phenomena. The referent for an ISM can be a real-
world situation or phenomenon. It could also be an
imaginary creation in the modeller’s mind. The rela-
tionship between an ISM and its referent is mediated
by the pattern of observables, dependencies and agen-
cies that it embodies. The counterparts of observables
and dependencies are variables and definitions within
the ISM. The current state of an ISM is represented
by the current set of extant variables and definitions –
a definitive script. This script may change and evolve
dynamically subject to no constraint other than that
the state of the ISM continues to stand in a meaning-
ful relationship to its referent as far as the modeller
is concerned. The counterpart of an atomic agent ac-
tion, whether this is carried out by the modeller or
any other agent, is a change to the ISM that involves
adding, deleting or revising a definition in the script. A
change to the definition of a single variable is effected
in such a way that all contingent changes to the values
of other variables are carried out atomically, so as to
achieve an “instantaneous” update.
The significance of an ISM cannot typically be appre-
ciated in isolation from our contextualized interaction
with it; in this respect, it is unlike a computer pro-
gram, whose semantics can be captured in the abstract
functional relationships that it serves to establish. The
interactions that shape an ISM have much in common
with the kinds of experimental interaction associated
with explanatory artifacts that a scientist might make
in the early (“pre-theory”) stages of an investigation,
or that an engineer carries out when speculating about
some aspect of a design. A characteristic feature of
EM is that what we understand by a model is identi-

fied with patterns of interaction with such an artefact
that emerge from experimental and exploratory activ-
ity over a period of time. This activity is broad in
scope: it may involve complementary interaction with
the external situations and phenomena to which the
ISM is intended to refer. It is also open-ended and
potentially subjective in nature: the modeller’s con-
ception of an ISM and its associated referent is subject
to evolve as the modelling activity progresses. In com-
parison with traditional mathematical models, an ISM
is intrinsically fuzzy, soft and fluid. If its relationship
to its environment can be sufficiently well-engineered,
however, it may – at the discretion of the modeller –
be exercised in a way that it emulates a model that is
precise, hard and tightly specified (cf. [4]).

The principal tool for Empirical Modelling is tkeden.
The tool supports a variety of notations in which defi-
nitions to express dependencies amongst variables of
various different types can be formulated. (For in-
stance, variables may correspond to scalar quantities
and attributes, strings, geometric elements like points
and lines, components of a screen display, relational
tables etc.) A distributed variant of tkeden, called
dtkeden, can be used to support modelling in a distrib-
uted environment. This provides an open environment
for developers and users to negotiate a shared interpre-
tation and shared representation. Negotiation of mean-
ing and consensus from many different personal, social
and cultural perspectives is at the core of collaborative
working [1]. The meaning that is attached to an ISM
is determined not by a formal computational seman-
tics, but through the interactive experience it offers to
each human participant [2]. The distributed variant of
tkeden offers the developer instant feedback, since any
redefinition has an immediate impact on the state that
is either directly visible to the developer (e.g. changes
to the attributes of display components) or directly af-
fects the disposition of the script to respond to future
interaction (e.g. introducing a dependency to link the
motion of a lever to the configuration of an object).
As with traditional prototypes, this enables “poten-
tial users” to exploit an ISM in sense-making activi-
ties. The modelling of behaviours as realised through
first modelling dispositions (though typically consum-
ing more attention and time and requiring more com-
putational resources) is a much more expressive activ-
ity than directly prototyping behaviours. It is also an
activity that allows users and developers to interact
through the modelling environment, whether through
tweaking the ISM or redefining components entirely.
This affords real-time collaboration among developers
and users beyond document-centric communication.

By way of an indicative illustrative example, the Vir-
tual Electronics Laboratory (VEL) was developed col-
laboratively by two MSc project students at Warwick
[8, 11]. The model was directed at teaching elementary
electronics both in the classroom and in a distributed
environment. In developing the VEL, D’Ornellas and
Sheth first created an environment in the form of a de-
finitive script to support a wide variety of interactions

3



and behaviours. D focused on enabling dependencies
between complex matrices that defined the mathemat-
ical semantics of circuits; S on setting up dependen-
cies amongst interface components. Collaborative in-
teraction between D and S was enabled by identifying
a small set of key observables and exploiting depen-
dency to bridge two contrasting modes of observation,
one concerned with primitive elements to be assembled
into an electronic circuit, the other with graphical icons
to be manipulated on the screen.

In the early stages, scripts for the internal seman-
tics and the interface were developed independently
on stand-alone tkeden interpreters. As the concep-
tual states of the construal became ever more rich, so
the definitive script became more complex and inte-
grated. For instance, where interface and semantics
were initially viewed in isolation, they were afterwards
combined, first in bringing conceptual integrity to mod-
elling electronic circuits, then later in representing the
states associated with different scenarios of use. In this
process, the emphasis shifted from the configuration of
the script itself to the varieties of meaningful agency
that could be effected through redefinition. In practi-
cal terms, the unbounded diversity in potential agency
was reflected in diverse ways of manipulating the state
of the model: by directly changing the script via the
tkeden input window; through interface actions that
triggered specific redefinitions; and through different
modes of redefinition and interpretation built into the
distributed tkeden interpreter itself.

Unusually rich semantic possibilities are afforded by
such a representation of conceptual state. From
the conventional perspective on possible ‘uses’ of the
model, the teacher could set up a circuit, and broad-
cast this to the class. Students could work individually
to adapt a copy of a circuit supplied by the teacher.
A class activity could be set up whereby the teacher
dynamically authorised groups of students to change
different circuit components, and the impact was dis-
played on a public model. This is merely to hint at
what redefinition of the script can achieve, which could
encompass modifying the mode of output from a phase
graph to a numeric representation, or integrating the
model with a traffic lights simulation. There are also
potential uses for the way in which a script can be
viewed as capturing the history of model interaction,
construction or revision.

In summary, the VEL development exhibits many fea-
tures relevant to DPD. In keeping with the holistic
nature of EM, it is hard to identify how each of the
specific key issues introduced above is represented in
isolation – integration of the human and the techno-
logical, support for evolution and diverse modes of in-
teraction and communication are bound up together.
Through this paper, we hope to draw the attention of
the DPD community to the obstacles that the classical
view of computing puts in the way of such a holistic
integration of concerns, and arouse interest in the new
possibilities that EM affords.

References

[1] M. Beynon, S. Russ, and W. McCarty. Human
computing: Modelling with meaning. Literary
and Linguistic Computing Journal, 21(2):141–157,
2006. Oxford University Press.

[2] W. M. Beynon. Radical Empiricism, Empirical
Modelling and the nature of knowing. Pragmatics
and Cognition, 13(3):615–646, 2005.

[3] W. M. Beynon, R. C. Boyatt, and S. B. Russ. Re-
thinking programming. In ITNG ’06: Proceedings
of the Third International Conference on Infor-
mation Technology: New Generations (ITNG’06),
pages 149–154, Washington, DC, USA, 2006.
IEEE Computer Society.

[4] W. M. Beynon, J. Rungrattanaubol, and J. Sin-
clair. Formal Specification from an Observation-
Oriented Perspective. Journal of Universal Com-
puter Science, 6(4):407–421, 2000.

[5] S. Bødker, P. Ehn, J. Kammersgaard, M. Kyng,
and Y. Sundblad. A UTOPIAN experience: On
design of powerful computer-based tools for skilled
graphic workers. In G. Bjerknes, P. Ehn, and
M. Kyng, editors, Computers and Democracy–
a Scandinavian Challenge, pages 251–278. Alder-
shot, Gower, Avebury, England, 1987.

[6] R. Bornat. Is ‘Computer Science’ science? In
European Conference on Computing and Philos-
ophy (ECAP), Norwegian University for Science
and Technology, Trondheim, Norway, 2006.

[7] A. Crabtree. Designing Collaborative Systems:
a pratical guide to ethnography. Springer-Verlag,
London, 2003.

[8] H. P. D’Ornellas. Agent oriented modelling for
collaborative group learning. MSc Project Report,
Department of Computer Science, University of
Warwick, Coventry, United Kingdom, September
1998.

[9] F. Jullien (Translated by Janet Lloyd). The
Propensity of Things: Toward a History of Effi-
cacy in China. Zone Books, New York, 1995.

[10] B. A. Farshchian and M. Divitini. Using email and
www in a distributed participatory design project.
SIGGROUP Bull., 20(1):10–15, 1999.

[11] C. R. Sheth. An Investigation into the Applica-
tion of the Distributed Definitive Programming
Paradigm in a Teaching Environment: The De-
velopment of a Virtual Electrical Laboratory. MSc
Project Report, Department of Computer Science,
University of Warwick, Coventry, United King-
dom, September 1998.

4


