Infrastructure for Appropriation Support as a mean for Distributed Participatory Design
Gunnar Stevens
Institute for Information Systems, University of Siegen, Germany

ABSTRACT
The appropriation of application systems, understood as a collective and creative activity, is a central but still underinvestigated issue in Participatory Design.
As a means to support appropriation processes, in the thesis the concept of appropriation infrastructure should developed. Appropriation infrastructures offer a high level of technical flexibility and equip an application with communication infrastructure. Communication stimulate knowledge sharing among users and between users and developers. Technical flexibility enables these actors to deal with differentiated and dynamically changing requirements. Taking the case of the BSCWeasel project, the realisation of such an appropriation infrastructure will be studied.
Keywords
Distribution Participatory Design, Appropriation, Flexibility, Tailorability, End User Development, Communication Mediated Communication, Remote Usability Engineering, Community Help Systems

1. Introduction

Appropriation of technology is understood as a creative process of the appropriator(s) which can even go beyond the rules and ideas associated by the developers of the software [cf. 1]. A successful appropriation of information technology leads to new work practises, innovative business processes or modified organizational structures. Processes of organizational appropriation take considerable time to find solutions which need to be developed for specific fields of application [e.g.: 2, 3].

Since the organizational environment typically changes during the process of appropriation and a successful appropriation of IT has an additional impact on work practises, business processes or organizational structures, the requirements for IT are not stable during this process. Therefore a design process which supports the appropriation of IT needs to deal with the dynamic evolution of requirements. In case the software is introduced into different fields of application, it is likely that the requirements may vary and evolve specifically. So the differentiation of requirements among different fields of application is another challenge for software design and appropriation.
2. Understanding Appropriation and Flexibility
Several case studies have investigated appropriation processes of groupware in a long term perspective[2-7]. They provide a rich empirical picture of appropriation activities and resulting changes in work practise, business processes and organizational structure.

Orlikowski and Hofman offer a conceptual model to classify organizational changes resulting from the appropriation of groupware [8]. They distinguish three types of changes. "Anticipated changes" are organizational transformations, which are planned and implemented purposefully at the moment the groupware is introduced into the organization. In contrast, "opportunity-based" changes are not anticipated when introducing groupware into an organization. However, whenever their potential is discovered, these changes are implemented in a purposeful manner. "Emergent changes" are not anticipated when the groupware is introduced, instead they are realized through decentralized unplanned activities. Beyond the organizational level the appropriation of groupware will lead to changes in work practice where a similar classification applies.

Buzzwords like Service oriented Architectures promise to enable the agile organization providing a flexible technology. In the Thesis the concept of flexibility should be studied on two different levels – product oriented flexibility and process oriented flexibility.
Product oriented flexibility
The HCI (and CSCW) community regards flexibility mainly as a product feature which allows tailoring computer applications within their contexts of use [9]. Tailoring takes place after the original design and implementation phase of an application; it typically starts during or right after the installation of the application in its field of application. Tailoring is usually carried out by ordinary users, local experts, system support or helpdesk staff in a collaborative manner.

The product-oriented perspective focused mainly on three research issues: highly flexible software architectures, appropriate user interfaces, and support for collective tailoring activities [10-14]. Several systems like OVAL [10], Prospero [11], and FreEvolve[12] propose highly tailorable groupware application frameworks grounded in different paradigm of software engineering.

A blind spot in most of the works on tailorable systems are methods to find the right kind of flexibility to address the requirements of particular contexts of use. The blind spot is related to the fact, that the approaches to build highly tailoring systems address the issue of flexibility on the product level only, and do not study how their products are related to the process aspects of appropriation and flexibility.
Process oriented flexibility
The most prominent examples for process oriented flexibility are agile software processes, like SCRUM or eXtreme Programming (XP). They are aware of the fact that software requirements are moving targets. The goal of agile processes is to provide extreme short release cyclic and allow customer to change the requirement at any time in the design process [13].

eXtreme Programming suggests that there should not be any extra effort to fulfil requirements that may appear in the future. This is the counterpart to the concept of radical tailoring. Radical tailorability wants to solve the problem of non-anticapated requirements by building highly flexible products, XP wants to solve this problem by providing flexible processes.
The strategy chosen by XP was related to the self-perception of the XP community that programmers should just execute the customer requests. Since XP does not care about the appropriation processes in the use context, the model does not make any suggestion about a shared infrastructure to foster mutual learning processes. Instead, the programmers just get indirect feedback mediated by the costumer on side principle [13], although in practice it is difficult to find such customer [14].
In opposite to eXtreme Programming, STEPS, one of the first process model that introduce process oriented flexibility, promote a mutual learning process between users and designer [15]. But STEPS do not make any suggestion, how such mutual learning will be realized. In addition STEPS do not deal if the heterogeneity in the application domain. Wulf and Rohde propose as part of their OTE approach, to enhance the STEPS model by integrating tailoring as an important design activity [16]. But also OTE do not deal with the underlying software development process or an infrastructure to support (not anticipated) appropriation processes. Some of these issues were addressed by Pipek and his concept of a discourse infrastructure [1].
Another inspiration of the Thesis will be the work of Fischer et al.. They hava a long tradition in building end-user modifiability for design environments [17]. In their early work, they chose approaches quite similar to the product oriented concepts dealing with flexibility. However, later Fischer suggests that product-oriented flexibility should become a part of an evolutionary design process. These considerations lead to a process model called SER (Seeding, Evolving Growth and Reseeding). In his conceptual consideration it has many similarities with the extended STEPS model which combines PD ideas with end user modifiability [18]. The theoretical considerations of the SER model seem to assume that user and designer participation takes place only during a specific phase, called reseeding. In addition the SER concept does not makes any suggestions about the technical infrastructure to bridge between the use and the design sphere.

3. The concept of infrastructure for appropriation support
However, a general infrastructure for appropriation support has not yet been developed. There are several approaches that deal with this issue, like help systems, exploration environments, user hotlines, technical flexibility [cf. 1]. However, these approaches are fragmented and do not refer to each other conceptually and technically.
The concept of the infrastructure based on two fundamental goals:
(1) to stimulate knowledge sharing among user communities by providing communication channels to reflect upon an application’s usage,
(2) to bridge between product- and process-oriented flexibility by providing communication channels between users and developers.

In addition, the infrastructure has claimed to connect a product-oriented view upon flexibility with a process-oriented perspective. Based on my personal experience with the concept of component based tailorability, I believe that the component-paradigm offers a sound technological base to integrate these approaches.

The design of the infrastructure that follows the design approach that the application itself can be seen as a boundary object [19, 20] which can foster knowledge sharing among the different actors involved in the appropriation process.

To act as a boundary object among users, the functions of the application and their tailoring options need to be understandable for the users from different backgrounds of practice and levels of expertise. Developers should be equipped with support that enables them to perceive the usage of the application and eventual break downs. Moreover, they need tools to efficiently provide additional flexibility, implement changes or refactor an application. Following the component based tailorability approach, access to a repository of components could contribute to make these work processes more efficient.

[image: image1.emf]Discourse

infrastructure

Component repository

production context

use context

use

tailor /

extend

annotate/

reflect

Software

realization

Reflect/

prepare

design

Deploy/

Embedment

preparation

-deploy versions /

patches

-download versions/patches

-share addions/tailored object

-make design suggestions

-discuss use issues

-evaluate user feedback

-discuss design issues

-add use information

-co-referentiality

 Figure 6 An infrastructure for appropriation support
Figure 6 gives a survey over the technical approach. The design discourses and the component-repositories mediate between developers and user communities. Their design needs to be meaningful to the different communities.

4. Initial realisation of a appropriation infrastructure
To explore the concepts, at the University of Siegen, we have developed a groupware application, BSCWeasel, which contains an infrastructure for appropriation support. BSCWeasel is a rich groupware client based on the BSCW platform. BSCW (Basic Support for Cooperative Work) was one of the first web-based groupware applications. It was developed at the German National Center for Research in Information Technology (GMD) during the mid 90s [21]. The BSCWeasel started as an open source project in spring 2004 (www.bscweasel.de) [22, 23] using Eclipse Rich Client Platform (RCP). Here the BSCWeasel inherit the product flexibility of Eclipse component concept.
To offer communication channels between users and designers, the BSCWeasel have integrated a professional requirements tracking system into the BSCWeasel application and have equipped it with a specific interface for users called PaDU (PaDU is the abbreviation of Participatory Design in Use) [29].

To realize this part of the appropriation infrastructure, we have developed a hybrid solution which consists of a professional requirements tracking system and a specific Eclipse plugin which implements a specific view and access to the issue tracking system and is integrated into the BSCWeasel interface PaDU make it possible that the user can write design contribution directly from the use context. A button is always visible to report shortcomings or suggest new design ideas. The dialog is an adaptation of the original critical incident dialog used in Hartson et al [7], but integrates features that improve the opportunities to make ostensive and deictic references to the artefact in order to clarify design ideas without complicated textual explications. e.g. annotate screenshots.
To support appropriation discourses among users, we have combine the concept context sensitive help function provided with the concept of community based help system using a Wiki [28]. The Wiki system allows extending, changing or annotating texts related to any function of the application. So the users can create their own specific descriptions of a function and exchange knowledge concerning the appropriation of functions within their specific practise. The objectives of the context sensitive help is to select these help entries from the help database, which where associate to the current use context.
5. Discuss issues
At the worskshop, I want to discuss the theoretical foundations of the concept of appropriation infrastructure and its relation to Distributed Participatory Design. In particular, I’m interested how the concept of direct manipulation (psychology concept with a focus on use) and the concept of boundary object (sociological concept with focus on appropriation) can be put together. E.g. the evaluation of PaDU indicates that users express their requirements referring implicitly or explicitly to the software artefacts and their individual use. Obviously software applications can play the role of boundary objects within appropriation processes.
I also want to discuss theoretical and methodological issues understanding appropriation processes. It seems that appropriation processes have been studied on a macro level only (e.g. Orlikowski). But I think for the design it will be helpful to understand appropriation on a micro level. Therefore, I plan to use a mix of objective hermeneutic from Oevermann, Crabtrees considerations to a technomethodological and the epistemology of the american pragmatismus (Peirce, Dewey) to carry out a evaluation of appropriation processes on a microlevel.
I also want discuss design concept to improve the switch form a use context to a meta-use context. E.g. several techniques have been promoted in the literature to address this issue like direct activation [24], self-disclosure [25], accountablity and open implementation [26], co-referential interfaces [27]. However, the constructive solutions were rather reseach prototypes which lacked an evaluation in practise.
I think, the technical stability and its installed base make Eclipse a good candidate to overcome some of these shortcomings. In a next step, I will try to extend the Eclipse RCP in a way that the linkage between software modules and interface elements are better perceivable. So there are still major design challenges ahead of us.

6. References

[1] Pipek, V., From Tailoring to Appropriation Support: Negotiating Groupware Usage, in Faculty of Science, Department of Information Processing Science 2005, University of Oulu: Oulu, Finland.

[2] Orlikowski, W.J., Evolving with Notes: Organizational change around groupware technology, in Groupware & Teamwork, C. Ciborra, Editor. 1996, J. Wiley: Chichester et al. . p. 23 – 60.

[3] Pipek, V.W., V. A Groupware’s Life. in Proceedings of the Sixth European Conference on Computer Supported Cooperative Work (ECSCW ’99). 1999: Kluwer, Dordrecht.

[4] Karsten, H. and M. Jones. The long and winding road: Collaorative IT and organisational change. in Int. Conference on Computer Supported Work (CSCW'98). 1998. New York, USA: ACM Press.

[5] Ngwenyama, O.K., Groupware, social action and organizational emergence: on the process dy-namics of computer mediated distributed work. Accounting, Management and Information Technologies, 1998. 8(4): p. 123 – 143.

[6] Wulf, V., Evolving Cooperation when Introducing Groupware – A Self-Organization Perspective. Cybernetics and Human Knowing, 1999. 6(2): p. 55 – 75.

[7] Törpel, B., V. Pipek, and M. Rittenbruch, Creating Heterogeneity - Evolving Use of Groupware in a Network of Freelancers. Special Issue on Evolving Use of Groupware, Computer Supported Cooperative Work: The Journal of Collaborative Computing (JCSCW), 2003. 12(1-2).

[8] Orlikowski, W.J. and J.D. Hofman, An Improvisational Model for Change Management: The Case of Groupware Technologies. Sloan Management Review (Winter 1997), 1997: p. 11-21.

[9] Henderson, A. and M. Kyng, There's No Place Like Home: Continuing Design in Use, in Design at Work - Cooperative Design of Computer Artifacts, J.K. Greenbaum, M, Editor. 1991: Hillsdale. p. 219 - 240.

[10] Malone, T.W., K.-Y. Lai, and C. Fry, Experiments with Oval: a radically tailorable tool for cooperative work. ACM Transactions on Information Systems (TOIS), 1995. 13 (2): p. 177 - 205.

[11] Dourish, P., Developing a Reflective Model of Collaborative Systems. ACM Transactions on Computer-Human Interaction, 1995. 2(1): p. 40-63.

[12] Stiemerling, O., Component-Based Tailorability, in Institut für Informatik III. 2000, Rheinische Friedrich-Wilhelms-Universität: Bonn.

[13] Beck, K., Extreme Programming Explained: Embrace Change. 2000, Pearson Education: Addison-Wesley.

[14] Rumpe, B. and A. Schröder, Quantitative Untersuchung des Extreme Programming Prozesses. 2001.

[15] Floyd, C., F.-M. Reisin, and G. Schmidt, STEPS to Software Development with Users Source Lecture Notes In Computer Science, in Proceedings of the 2nd European Software Engineering Conference. 1989, Springer-Verlag: London, UK.

[16] Wulf, V. and M. Rohde. Towards an Integrated Organization and Technology Development. in ACM Proceedings of the Symposium on Designing Interactive Systems. 1995.

[17] Fischer, G. and A. Girgensohn. End-user modifiability in design environments. in Proceedings of the SIGCHI conference on Human factors in computing systems. 1990. Seattle, Washington, United States ACM Press.

[18] Fischer, G. and J. Ostwald. Seeding, Evolutionary Growth, and Reseeding: Enriching Participatory Design with Informed Participation. in Proceedings of the Participatory Design Conference (PDC’2002). 2002. CPSR, Malmö.

[19] Star, S.L. and J.R. Griesemer, Institutional Ecology, Translations and Boundary Objects - Amateurs and Professionals in Berkeleys-Museum-of-Vertebrate-Zoology, 1907-39. Social Studies of Science, 1989. 19: p. 387-420.

[20] Subrahmanian, E., et al., Boundary Objects and Prototypes at the Interfaces of Engineering Design. Computer Supported Cooperative Work, 2003. 12 p. 185-203.

[21] Bentley, R., et al., Supporting Collaborative Information Sharing with the World Wide Web: The BSCW Shared Workspace System. The World Wide Web Journal: Proceedings of the 4th International WWW Conference, 1995. 1: p. 63-74.

[22] Stevens, G. BSCWeasel – How to make an existing Groupware System more flexible. in Demo presentation on the 9th European Conference on Computer-Supported Cooperative Work. 2005.

[23] Stevens, G., S. Budweg, and V. Pipek. The "BSCWeasel" and Eclipse-powered Cooperative End User Development. in Proc. Workshop "Eclipse as a Vehicle for CSCW Research" at the Int. Conf. on CSCW 2004, (Chicago, IL, USA, 2004). 2004.

[24] Wulf, V. and B. Golombek. Exploration environments: concept and empirical evaluation. in Proc. of the GROUP. 2001.

[25] DiGiano, C., Self-Disclosing Design Tools: An Incremental Approach Toward End-User Programming. 1996. p. University of Colorado.

[26] Dourish, P., Open implementation and flexibility in CSCW toolkits. 1996, University College London: London.

[27] de Souza, C.S., S.D.J. Barbosa, and S.R.P. Silva, Semiotic engineering principles for evaluating end-user programming environments. Interacting with Computers, 2001. 13.
[28] Stevens, G., Wiedenhöfer, T. CHIC - A pluggable solution for community help in context, Conference of the Nordic CHI, 2006 (accepted for publication)

[29] Stevens, G, Draxler, S., Partizipation im Nutzungskontext, Konferenz Mensch & Computer, 2006, (accepted for publication)

PAGE

_1204165471.vsd
�

�

�

�

Discourse
infrastructure

production context

Component repository�

use context

�

- deploy versions / patches

- co-referentiality

use

tailor / extend

annotate/
reflect

Software realization

Reflect/prepare design

Deploy/
Embedment preparation

- download versions/patches
- share addions/tailored object

- make design suggestions
- discuss use issues

- evaluate user feedback
- discuss design issues
- add use information

