Denim-Gabbeh-Multi-users Report

Amir M Naghsh - Gilles Bailly
Sheffield Hallam Univeristy- Grenoble University

Table of content

1I

11X

v

—

B W=

INTRODUCTION 2

RELATED WORK 3

IMPLEMENTING MULTI-POINTER ACCESS FOR GABBEH 5
TICLLVISION ...ctitieiieeettieeieeeteeetteeetteetbteasseeestbeassssaeasseaassseessseeanssaeassesassseesnseasassesassseessseannssesassesenssennnsen 5
MULTI-POINTER-VISION.......cceittteittieetteesutteesteeestteessseeasseeassseessseassssesassessssseesssessassesasssessssssssssesassessssseesnsen 6
SIMULATORcvtieittieeiteeetteeesteeesteeetseeassesessseessseeeasseaasssesssssassssesassessssseessessssseesssessssssensssesassesssssessssessnssens
MODIFICATIONS e

4.1 MoOodified DRI filesoocuieiiiiiiiiiiiiiie ettt sttt 10

4.2 MOAIfIed SALIN fIL@S ..ottt ettt e 12

FURTHER WORK ERROR! BOOKMARK NOT DEFINED.
FURTHER DESIGN DEVELOPMENTuutiitttesieeestteesrteesssesssseeesssesassesessseessssessssesassesensssessssesssssssssessssssensnes 15

1.1 STMLATOT <.ttt e ettt e ettt e e e et e e e ettt e e e eeae et e e s eetaeeessentaeeseennreeeeens 15

12 PDA —TADIEE PC.....oooeeeeeeeee ettt ettt e e et e e et e e e e e taa e e e e eetaseeeseattaeeeeeareeaeens 15

1.3 Voice comments

1.4 FURGOT TFACKING ..ottt ettt st a ettt ettt e
FURTHER CODE DEVELOPMENTScuuuuuiieeieettetetttttttsuteseeseeeesseetsssssassmssssnssssssssssessmssmmmmnmnsassssssseerens

2.1 Fix Current Bugs

2.2 COMMENE PANEL........ceeveiaeiieiininiieiineneeieeeeie e

2.3 MouseListener/TokenListener

24 MATLY FOOLS ...ttt ettt et et e et e et e eaeeett e e st e sbeenbeenbeenseenseenseenteenneenseenneanes

| Introduction

The main aim of this work was to introduce synchronous collaboration into an electronic
paper prototyping tool such as Gabbeh. In other words enabling Gabbeh to support multi
entries thorough various events and enabling Gabbeh to support multi-users to use different
tools to create, delete, move, resize and edit the design components at the same time.
Augmented table and TCLVision technology have been used to provide a collaborative
environment (frame work).

It is generally accepted that user involvement is essential for a successful design of an
interactive system. Bodker and Gronbeak (1991) found strong arguments for a more active
and direct user involvement in designing computer systems. They found that it is important
for users to find out how computer systems work. But it is more important that users learn
through experiences with such not just to read a system specification or watching a
demonstration.

Prototyping is one of the known ways for encouraging users to become more involve in the
design process of a computer system. To encourage a better user involvement it is important
that prototyping approach supports cooperative activity between users and designers, a
possible example is the approach introduced by Bodker et al. (1991), called cooperative
prototyping. Such prototyping approach could establish a design process where both users and
designers are participating actively and creatively, drawing on their different qualifications.
To facilitate such a process, the designers must somehow let the users experience a fluent
work-like situation with a future computer application; that is, users’ current skills must be
brought into contact with new technological possibilities.

Button et al. (1996) explains that a growing number of ethnographic reports suggest that a
collaborative design process depends on communications, and on transformation process
involving design prototypes. The communication dimension and the role and transformation
of artefacts in design work intersect in that the prototypes are subject to discussion,
negotiation, and alteration. Perry et al. (1998) explain that design work should proceeds a
situation in which joint, coordinated learning and work practice evolve, and in which
prototypes help to meditate and organise communication. It becomes an important area in
CSCW to provide affordable ways and tools to communicate and collaborate during design
process of developing prototypes, mock ups, and other objects and models. Such
communication and collaboration depends on team layout (co-located or distributed) and the
synchrony of communication.

In a collaborative design process various tools are used to develop mock ups, models and
prototypes. Some of these tools are explained in previous studies (Lin et al. 2000) as pens,
whiteboards, papers and tables. They have been recognized as primary tools that were used
for explaining, developing and communicating ideas during the early stages of the design
process.

In previous researches pen based interaction technology was applied in interactive system
design which also could be described as “electronic paper prototyping” tools. Examples
include Denim, Freeform, Silk and Satin. Further study (Naghsh et al. 2005) has showed how
supporting annotation in a distributed electronic paper prototyping environment could support
asynchronous communication and encourage more user participation (e.g. Gabbeh).

Il Related work

1 Satin

Satin (Landay et al.) is a java based application that was developed at Berkeley University. It
is a toolkit support for informal ink applications. Satin was motivated mainly to apply natural
activities such as sketching and writing in electronic prototyping environment. Satin could be
broken down in to 12 concepts.

Recognizers Views Transitions
Interpreters Scenegraph Rendering
Stroke Events Notification
Libraries
Widgets Command Clipboard

Figure 1: Lecture notes: University of California !

Satin assembles stroke from mouse or a pen movement and provides reusable mechanisms for
handling and processing strokes. Satin process strokes in following order: first Satin processes
stroke with its gesture interpreter if it does not match any of recognizers then it would re-
dispatch the stroke to one of its children (the component which contains the stroke), then
Satin processes the stroke with gesture interpreter and if it is not recognised as gesture then it
processes the stroke with its ink interpreter and handle the stroke in the object itself.

2 Denim
B Untitied - Denim ! = - and Settings\Workiby Documents Exper.... = |8 3]
EX) € ok B rorecs| o v
how to get to...
| image]
| =
i 1 map |
Homa | p
Gat to | ||
: W | .
gt argund

Directions
——

leisure -

Eating out

e

| Hestory

T 1

Figure 2 : Denim, run mode, design mode

1htt ://dub.washington.edu/projects/satin/docs/presentations/satin-uist2000 files/v3 document.htm

DENIM [(Landay et al.) is a sketching tool for designing web-sites that has been developed in
java. DENIM is usually run on a graphics tablet, such as a TabletPC or a Wacom Cintiqg. In
DENIM users can sketch out the overall structure of a site (a collection of pages), sketch the
contents of the pages as a set of ‘scribbles’, define hyperlinks from scribbles in one page to
another page, and then execute the resulting hypertext in a reduced functionality browser.
Figure 2 depicts a screenshot from DENIM. The slider bar to the left of the screen allows the
site to be viewed at different levels of detail — varying from a site overview that simply
identifies the pages included, through a navigation view where the overall navigation can be
examined, down to a detailed view where fine details of individual pages can be manipulated.

3 Gabbeh

Gabbeh (Naghsh et al. 2004) is an extension to DENIM. The core innovation in Gabbeh is
that it allows different stakeholders to add arbitrary annotations in the form of comments
either when the model is being designed or when the model is being executed. Figure 3
shows an exe}mple of comments in Gabbeh in the ‘design view’.

A

ig on that project

ho-i"'_ﬁ'e

5 links tc sponsored research inst

0 !

= N

pémdo on a day to da}kﬂsis\he\m at Sheffield Hallam University
e \\\ =

= Current Project
~— . Current Projects
== \‘1\. . = ||

Cusrent project that are carried out by post gra

Figure 3 : Comments in the Gabbeh design view

End users may execute Gabbeh using a separate limited functionality browser to review a
design. To make Gabbeh easier to be used by end-users, the design sheet is excluded from the
version of ‘run mode’, which is installed at end-users site. It allows the end-users to work
only with a simple browser with annotation features

A comment in Gabbeh can be associated with any arbitrary number of design components,
such as panels, labels, texts and scribbles. Comments are given a background colour. This is
intended to allow development teams to distinguish between different types of comments, or
perhaps between comments from different speakers. The usage of comment is deliberately left
open.

Gabbeh allows end-users to view and add comments while they are reviewing the design in
‘run mode’. This functionality is intended to allow end-users to give feedback through the
prototyping medium. Figure 4 shows an example of how users can view and add comment in
‘run mode’. Comments are displayed in a side window adjacent to the page. Gabbeh displays

the comments location within the page using coloured numbers on the page. If the comments
is only associated with the page, Gabbeh only displays the comment in the side window.

@ 3 @ |Add Cl]mmErll| |Hide Cﬂmmerlls|

ICOMMENTS
Researcher Name ol
|Link will grab all publictions by name and y
SHU flesencdl TL——
f ‘|there should be a page listing all
in 4 praL k{% Prayn k‘)ﬁl PLU.‘ \L\m r {‘(Jﬁ %\ {’ |[_\<& publi‘ca_-‘rlnrls for this r'g'se_ar."chl_r"
I wt <k 8
"P:"_g;_\l__g ‘ Iﬁr\\e Fs)a B |ean you put the researcher name instead o
5 i
an i
NO e | This page holds an image of the researche
f'%e] ‘{also included on this page is a list of their
current work. the courses that the teach
Sihied amc | :
P@Sech[,\ ‘,[:h’\\ﬂ ‘—e\BJF] 3 nsert Cn.mr.nen:
' (’() uv g ey It is gbod;._.ﬁdf' I was wohdrz‘r"_ing\ | Col
— if you can move the publication o
S box to the bottom of the page. B
5 I (® Show the Comment ! Hide the Cummem‘
G\wa} /\/\]0 oy :
e e — e Canei

Figure 4 : Adding comment when Gabbeh is executed

lll Implementing Multi-pointer access for Gabbeh

The current version of Gabbeh supports asynchronous communication by letting one
individual user at the time to make one entry (annotations) through a mouse, a keyboard or a
graphic tablet. As it was explained in the introduction the main aim of this work is to enable
Gabbeh to support synchronous collaboration in the early stages of design process. Therefore
it is necessary to enable Gabbeh to support multi-entries for multi-users at a same time. One
possible way to support multi-entries is to use TCLVision technology which was already
available in CLIPS laboratory.

1 TCLVision

TCLVision is a toolbox that is able to track tokens on an augmented table. The augmented
table is consisted of a white board, a retro projector and camera. The white board is placed on
the top of the table (on the sheet). The retro projector is placed over the desk (fitted to the
ceiling) and projects the interface on to the table. The camera is fitted next to the projector
and is used to track tokens movement on the table and create event and send them to a socket.

Figure 5: Augmented layout.

S T - .,
: / °
V. l Projector
Server Camera
VN U
/ .o. \ :
/. .
”--.. \ :
\H

Whitehoar

2 Multi-Pointel+Vision

Multi-Pointer” is a java toolbox which is developed to capture generated tokens by
TCLVision and generates tokenEvent for any java applications. The tokenEvent indicates that
a token action occurred in a component. A token action is considered to occur in a component
if the token is over the visible part of the component's bounds when the action happens. This
tokenEvent is generated by Multi-Pointer toolbox for three action performed by a token.
These three actions can be explained as following procedures:

first action is token appeared, for this action, firstly user needs to decide a location on the
white board as the position for the action that he wants to perform and then, he should hide
the token with his hand (put his hand over the token) completely so camera would not be able
to see it while he is moving it around on the table. Then he can move the token around the
table until he reaches his interested position. Then user can take his hand away let camera see
the position of the token and that’s when the token appeared action occurs. This action is
called appeared because when user uncovers the token, it becomes appear to the camera and
the action occurs.

Next action is when token is moved on the table. In this action user uses his finger to move the
token on the table. It is important that users don’t cover the token, and maintain the visibility
of the token by camera and let the camera track the token during the move.

The last action is token disappear. This is when users have managed to perform his goal (e.g.
drawing a line) and wants to conclude it. He has to hide the token again by covering it. When
user covers the token with his hand, token disappears when camera can not see it any more
and the TCLVision recognizes the action since camera doesn’t receive any more signal for
that particular token.

For each of these actions, a token is appeared, a token is disappeared and a token is moved on
the augmented table, a rokenEvent is passed to every TokenListener object which is registered
to receive the token events. Each listener object gets a tokenEvent containing the token event.
The tokenEvent has three attributes which are tokenID, tokenPosition and tokenState. The

* In this document Multi-Pointer is also used to refer to Multi-Pointer-Vision package.

tokenState indicates the performed action which is one of the following: Appear, Disappear
and Motion.

Multi-Pointer is consisted of four classes: TokenEvent.java, TokenListener.java,
VisionCapture.java and TokenManager.java. The VisionCapture.java receives token actions from
the server and generates fokenEvent. Instead of sending fokenEvent directly to the all
TokenListener objects which are registered to receive the token event, VisionCapture.java
writes the rfokenEvent in to a map. Whenever system has time TokenManager.java reads the
map for new tokenEvent and sends them to all TokenListener objects. To run
VisionCapture.java the following method should be called in the default constructer of the
application: TokenManager.startVisionCapture() and it will initiate the a process as it is
shown in Figure 6.

Write - Read .
mapVisionCapture | —==dC),
VisionCapturejava | (update) ™ | P p | | TokenManager.java

Threa Threa

Get events from the
socket

reqistered listeners,

I:I TokenListener.java

TCLVision Data
7 server process/Gabbeh

Figure 6: Generateing tokenEvent from token action

TokenListener.java is the listener interface for receiving token events. The methods in this
class are empty. The classes which are interested in processing token events should
implements this interface. The class that implements TokenListener interface should define all
of methods of this interface. For example to create a listener object in sheet.java to receive
token events and process them, the following code should be added:

class InternalTokenListener implements TokenListener{
public void tokenAppear (TokenEvent e) {}
public void tokenMotion(TokenEvent e) {}

public void tokenDisappear (TokenEvent e) {} }

After creating the listener object, it has to be registered so it would receive generated
tokenEvent. To register the listener object, it has to be added to list of objects which are
interested to receive token events by calling TokenManager add method. Therefore to register
the InternalTokenListener example, following code should be added to the default constructor
sheet.java:

InternalTokenListener tokenListener = new InternalTokenListener();

TokenManager.add (tokenListener) ;

Thwal

Toher Event

;:::‘Zv:;dq “ehtufagzsy J; ‘,JL

aren *henlan TorLitener Tikeihanaga WiionCaplure

dethla - fhat okenipiart ToksnForan) inid sibbeiby Vectr air: Sting

L Pans Hnkenlizanpaant TakanFomed) i cmptay :inf pur: ot

et TolhenEuert]) olanhstiont: TakenEven) : veid <dpletes Tohenilanagen] suckel: Sockst

<soeaters TolenBvertolen: TolerErent) A e’ soid bufler-ectire : IuferedRecder

setTolenEventt ToherEvenf): woid dipatehlt [oerBent o wed - it

selbrenlL: inf < 70 8 abtokanl iner Tubsnl izena) - unid input Datalrputéhream

aetTobenld) int tomiifakon e Toben funar) wnid outpu:: DataJuputiheam

it Gring thapippe st ToherFrent) nid calbration : boalean

sel3la el iy, i tosanblotiontt TobanEvart): wid dlariionCastura) woic

selPusliviis, Nvaly. flva) . uoid tosanDisappaats okanErart): void < eruates Vigior Capun()

qusléL. TokeiEven) Loy wan dranT oksng'y Graphics tarsk: ivtbeansi ind) eid nun) :veid

qusldd TekanEvent) - brolean chartisionCapturef) : vaid r— intTofloatiert:inddzo: inf): foat

cquakFLg TOkErR) bodlean ‘maitferge iyl vo 8 1 B ol id

e3U3lsH g loaty: Mot booledn // gl derkven hehlip arison():void

testing) sting / st Vinilgber) larLtenCentiicn) :vid

s ety fha): e // i inseTuanZuerdt TobenEuert): vuid FRTE—

isReacen): boolean // MMMM shupLisLen Evenisiun) . vuid

sutfieadenireaden; boclear) waid ar mﬂ_md ‘ ualbraye TCLV sivn . il

a0 shenig: raphicsrans, rtans”. nb: void el Colapdnlind | yelTuee Bl wid

mai(arge: Sting [l void it It vold

tebmblouss Eventhoce Btace: Shirg): int toksnEvendlt TokenEvzn) wald
malnargs: Stiing[) vild

Figure 7 : Multi-Pointer class diagram

3 Simulator

The TCLVision and Augmented table are essential means to achieve the main aim of this
work which is enabling Gabbeh to receive multi entries. Since this project is the result of the
cooperation between two institutes and researches involved are spread across three locations
and augmented table is only provided at one of these locations. Therefore it came to attention
that developing a simulator for augmented table is necessarily since not all of the team
members have direct access to the augmented table and it is important to be able to evaluate
the design repetitively at early stages of development process. Also it would encourage a
more iterative design process by making it easier to test every step of the design and
development, since the simulator could be run on the same machine as the Gabbeh is running
and it would save time and money which is needed for setting up and lunching TCLVision
and augmented table for each single test.

The simulator is developed in way to be easy to use. It has a simple sheet which simulates the
surface of the augmented table. The mouse is used to perform token actions on the sheet.
Following mouse actions are used to simulate token actions on the augmented table: mouse
left button click as token appear, mouse drag as token motion and mouse right button as token
disappear. Developing the simulator offers two main advantages; first is to generate token
actions which make it possible to validate Multi-Pointer-Vision package for generating
tokenEvent and sending them to registered listener objects, and second is to make it possible
to evaluate the use of Gabbeh tools (e.g. pen, comment tool, zoom slider) when a simulated
token appears or it’s location changes (token motion) on the simulator sheet.

Figure 8 demonstrate how a user is managing five tokens on the simulator’s sheet. Token A is
been used to adjust the zoom level. Token B is used to select the pen. And token C, D and E
have been as three distinguished inputs for one selected tool.

Figure 8 : Simulator of TCLVision.

Figure 9 shows a closer view of how the feedback of token is look like on DenimSheet. The
number displayed on the feedback is same as the fokenID which helps in recognizing tokens
when there is more than one user working on the table or the simulator.

Figure 9: Token feedback on DenimSheet

4 Modifications

As it was explained in the introduction, Gabbeh is implemented by extending Denim and
Satin projects. To enable Gabbeh to support multi entries some of the files of each underlying
project have been modified which are explained in this section. This section is consisted of
two subsections which explain the files which have been modified in Denim and Satin.

4.1 Modified Denim files

4.1.1 DenimConstants.java

When the MouseListener is used, it is possible to identify the relative position of the curser on
the sheet by accessing MouseEvent. But when TokenListener is used, TokenEvent only store
the absolute position of the token on the screen which is not the same as the relative position
of token on the DenimSheet. Therefore to calculate the relative position of the token, it is
important to find the absolute position of the DenimSheet on the screen. Then it is possible to
check if the token is within the sheet and calculate the relative position of the token.

Since DenimSheet is not visible on the simulator window it is not possible to use
getPositionOnTheScreen method as we use on the table. This would be same when
token is placed on ZoomSlider or ToolsArea. Therefore the absolute position of each area is
stored in DenimConstants:

public static final int DEFAULT__ZOOMBOX_WIDTH = 100;
public static final int DEFAULT_SHEET_HEIGHT = 900;

These values (height of the sheet and width of zoombox) are used to insert the absolute
position of interesting components when it is needed by calling DenimConstants. Now it is
possible to check if tokenEvent is inside a component or not. For example to check if
tokenEvent was occurred in DenimSheet, first SatinConstants. DEFAULT _ZOOMBOX_WIDTH 1is used to
find the relative position of the tokenEvent,

tokenEvent translatePoint (- SatinConstants .DEFAULT ZOOMBOX_ WIDTH, 0);

Then check if relative position of tokenEvent is within the DenimSheet (parent):

if (tokenEvent.getX() < 0 |l tokenEvent.getX() > parent.getWidth()){
return;

}
if (tokenEvent.getY() < 0 |l tokenEvent.getY () > parent.getHeight()){

return;

}

To find relative position of fokenEvent in ToolsArea, both DEFAULT_ZOOMBOX_WIDTH and
DEFAULT_SHEET_HEIGHT are required. It is explained in ToolsArea.javaTool.java section.

4.1.2 ToolsArea.java

ToolsArea is a container (JPanel) which contains all the available tools in Gabbeh. Each tool
is placed in ToolsArea as a JLabel and could be selected by using a mouse click. When a tool
is selected the mouse curser changes to the selected tool, for example when pen is selected,
mouse curser would change to pen. Also pen would be disappeared from the ToolsArea. To
select another tool, for example commenting-pen, the user could click on commenting-pen
and the pen is dropped in the ToolsArea and curser changes to commenting-pen. It is not
possible to perform this procedure when a token is used, since the curser is disabled and not
visible when the TokenListener is used. Therefore it is not possible to identify which tool has

10

been selected, also tools size in tools area are not appropriate to be used on a big display such
as augmented table, and it would be difficult for user to select the tool by using a token. To
over come this problem large buttons have been used instead of labels to display the tools (see
Figure 8). It is important to note that the token which is used to select the tool is different
from the tokens which are used by users for designing. In the current version, only one tool
can be selected that will be shared by all users. It means that one token (e.g. token B in Figure
8) is used to choose the interested tool and it will remain there while users are using that tool
to perform other actions using other tokens (e.g. token D, E and C in Figure 8). Therefore it is
important to check if the relative position of the fokenEvent is inside the tools area before
processing it.

TokenEvent.translatePoint (—DenimConstants.DEFAULT_ZOOMBOX_ WIDTH,
-DenimConstants.DEFAULT SHEET_HEIGHT) ;

if (TokenEvent.getX () < 0 || TokenEvent.getX() > ToolsArea.getWidth()) {
return;

}

if (TokenEvent.getY () < 0 || TokenEvent.getY() > ToolsArea.getHeight ()) {
return;

}

To enable the ToolsArea.java to receive and process tokenEvent the code has been modified
and an [InternalTokenListener was added. InternalTokenListener implements the
TokenListener methods to enable the user choose the interested tool by using a token.

class InternalTokenListener implements TokenListener({
public void tokenAppear (TokenEvent tmpEvt) {}
public void tokenMotion (TokenEvent tmpEvt) {}
public void tokenDisappear (TokenEvent tmpEvt) {}

The InternalTokenListener has to be added to the object listener list for receiving fokenEvent,
therefore the following line is added in the ToolsArea constructor:

TokenManager.add (new InternalTokenListener());

InternalTokenListener implements tokenAppear to enable the user to select an interested tool
button by using a token appear action over that button. The tokenAppear method receives
tokenEvent and translates the position of the tokenEvent to check if the token appear action
was occurred within the tools area. If the position is valid, then it checks if any tool was
previously in use. If it was then drop the old tool. The gefTool method is called afterwards to
check if the token is placed over the bounds of one of the tool buttons. The getTool method
uses the fokenEvent position and returns the interested tool if the token is placed over any of
the tool buttons and let the tool be grabbed by calling the tool. grab method.

TokenEvent evt = new TokenEvent (tmpEvt) ;
. check if the tokenEvent position is valid

Tool currentTool = ui.getCurrentTool();
if (currentTool != null) {
currentTool.drop(..,..);
}
Tool tmpTool = getTool (evt.getX(),evt.get¥Y ());
if (tmpTool != null) {
tmpTool.grab () ;

11

InternalTokenListener implements fokenMotion to enable users swap tools when a token is
moved within ToolsArea from one tool position to another. The tokenMotion works in the
same way as the tokenAppear method works. It checks the position of the tokenEvent for each
motion action, and then if it is valid, it drops the current tool that is in use and grabs the tool
which is returned by getTool method for that position.

To drop the tool user can perform token disappear action. InternalTokenListener implements
tokenDisappear method to receive the tokenEvent, check if it has a valid position and drop the
current tool that is in use.

When the simulator is in use, to enable the user identify which tool is selected ToolsArea has
to paint a feedback on the selected tool. The current version of the code does not provide such
feedback, as it can be seen in Figure 8 that only the token B that is placed within the tools area
has no feedback.

4.1.3Tool.java

This class only encapsulates the generic behaviour of a tool and specific tools extend this
abstract class. Two of the main methods in this class are grab and drop which control the
selection of the tools as it was explained in the previous section. The code is modified to
prevent the tool from being disappeared from the tools area and cursor changes when a tool is
selected.

4.1.4 ZoomSlider.java

ZoomSlider is placed on the left hand side of DenimSheet and controls zoom level of the
design model. To enable user to change the zoom level by using a token the ZoomSlider is
modified and implements TokenListener. This enables ZoomSlider to receive tokenEvent and
process it. It allows the user to perform token appear action to change the zoom level.

In addition ZoomSlider was modified to provide feedback on the zoom bar when a token is
placed in the simulator, the PaintComponent method is modified to call TokenManager and
draw the feedback on the slider.

TokenManager.drawTokens(g3, TranslateX, TranslateY);

4.2 Modified Satin files
4.2.1 Sheet.java

Sheet is the main panel which contains all the screens and patches such as DenimLabel,
DenimPanel, Comments and Strokes. Sheet is modified to implement TokenListener by
adding an InternalTokenListener. This would set the focus to the sheet when user is drawing
by a token on the sheet. The MouseListener is also been disabled since there is no need to
have mouse input when Gabbeh is running on the augmented table or the simulator.

Also the paint method in sheet.java is modified to enable token feedback on the sheet. The
paint method calls TokenManager to paint the tokens that have appear or motion status.

4.2.2 StrokeAssembler.java

StrokeAssembler gathers mouse events and creates a stroke. When it gets a mouse event, it
can consume it (AWTEvent .consume ()) and not let other classes use that event. If a mouse
event is already consumed the StokeAssembler ignores it. Stroke is the main input action in
the Satin application and there are three action events which are supported in Satin

3 g -is the Graphics context to draw in

12

(NewStrokeEvent, UpdateStrokeEvent and SingleStrokeEvent). Following methods define the
behaviour of the GraphicalObject that the stroke was drawn on it and one of the above stoke
events was occurred in it.

handleNewStroke (NewStrokeEvent)
handleUpdateStroke (UpdateStrokeEvent)

handleSingleStroke (SingleStrokeEvent)

Before that the strokeEvent is dispatched to the interested GraphicalObject that was accrued
on it, the strokeEvent is dispatched to the registered Gesture Interpreter and Ink Interpreter to
get process as it is explained in Satin section.

To enable users generate strokes by using tokens, StrokeAssembler should accept tokenEvent
and accumulates the fokenEvents to generate stokes. StrokeAssembler is modified to
implements TokenListener in the same way that was explained in Multi-Pointer-Vision
section. The position of each tokenEvent is checked to be within the sheet bounds and then the
relevant method would process the event.

Since there are more than one token used on the table at the same time, it is important to be
able to recognize the correct stroke to add the tokenEvent position. Therefore two hash maps
are introduced to keep track of the relation between a token and a stroke.

public HashMap mapTimedStroke;

Since the token appears only once in the process of creating a stroke, in tokenAppear method
the rokenlD is used to start tracking of the token and the stroke:

String key = String.valueOf (tokenEvent.getTokenId());

mapTimedStroke.put (key, currentStroke);

The TokenMotion method is called in the process of creating a stroke as long the token is
moving. For each token move action, tokenMotion method is implemented in following ways
to find the relevant stroke to continue the process:

currentStroke = (TimedStroke)mapTimedStroke.get (key);
if (currentStroke == null) {
return;

}
Then it continues the process and adds the updated stroke to the map at end of the method

with using same key. It is important to note that the rfokenID is the ID for each individual
token and it does not change when different actions are performed with the same token.

When the token is disappeared, the key and timed stroke gets removed from the map and
Timed Stroke is generated.

mapTimedCurvyStroke.remove (key) ;

4.2.3SatinConstants.java

SatinConstants is modified in the same way that DenimConstants is modified and is explained
in DenimConstants.java section.

13

4.2.4 StrokeEvent.java

StrokeEvent is the interface class for all the events generated for a stroke. The strokeEvent is
modified to include two methods to track which token has generated the action for an

interested strokeEvent.
public void setTokenEvent (TokenEvent evt)
public TokenEvent getTokenEvent ()

4.2.5 ImmediateInkFeedBackInterpreter.java

Since the StrokeAssembler is modified to handle more than one input at the same time, it is
important to modify all the classes that strokeEvent is dispatched to them, (such as Gesture
Interpreters and Ink Interpreters) to enable them to track tokenEvents for different token at
the same time. Therefore ImmidiatelnkFeedBackInterpreter has been modified include a map
containing tokenID and strokeEvent in a similar way that it was modified in StrokeAssembler
class.

In the current version, we only have modified ImmidiateInkFeedBacklInterpreter from all the
available interpreters. This is because ImmidiateInkFeedBacklnterpreter is being used in most
of the tools and it has a direct effect on the way that Gabbeh is used. Modifying this
interpreter prevents confusions between different tokens and not paining unwanted stroke
lines between different tokens.

14

5 Further Design development

5.1 Simulator

To improve the testing it is recommended to implement the simulator as part of Gabbeh by
modifying the MouseListener. This could simulate a closer feel and look to what happens on
the table by having the simulator running on top of the Gabbeh (the design has not discussed

yet).
5.2 PDA - Tablet PC

Token size makes it inappropriate to be used for designing details such as handwritings and
low level sketches. A possible way to encourage more user involvement and enabling
designers to sketch low level details is to use portable devices which support tablet
technology and can be used around the augmented table. Since devices like PDA does not
have large enough displays, it is not possible to display complete design sheet in their screens.
Therefore one possible solution is to let user to have a abstract view of the design sheet and
select a point on his/her PDA and then the client version of Gabbeh on the PDA let user to
zoom in to that point and make changes. It also would let users to use the attached keyboard
to PDA or the Tablet PC to use for entering text since it is not possible to enter text by using
tokens on the table!

Not editable

Translation
Zoom

15

5.3 Voice comments

Recording speech, voice comments.

5.4 Finger tracking

Update the current version of Multi-Pointer-Vision with the work of Julien Letessier in order
to use directly fingers.

6 Further Code Developments
6.1 Fix Current Bugs

6.1.1 Move a page

There is bug which cause the page gets deleted when one user is moving it and another user
appears a token on the table. This is important to fix this problem since interrupt the
collaboration when two users want to move two pages. It is expected that the source of the
problem is in the SelectAndMovelnterpreter.java. It is required to modify this class to map
tokenEvent to tokenlD.

6.1.2 DenimPanel and Interpreters

Modify DenimPanel to implement TokenListener. This would enable a panel receive
tokenEvent and also to associate a panel to a token. (it is important for future work .. more
thinking)

Also it is important to modify all existing interpreters to implement TokenListener and map
each tokenEvent to its tokenID. This is to enable more than one token be used on the table
without any conflict between them. It has not been done because of the time limitation and
should be a straight forward modification to do.

6.2 Comment panel

To enter a text comment or to manage the colour and visibility of comments user needs to on
the CommentDialogBox. The CommentDialogBox interface is not suitable to be used with
token as input. The Interface needs to change in away which would enable the user change the
colour of comment by using a token.

6.3 MouselListener/TokenListener

It is important to be able to switch between MouseListener and TokenListener. Since
MouseListener conflict with TokenListener when Gabbeh is running, MouseListener is
disabled wherever that TokenListener is enabled. It is required to have an option to make it
possible to choose which listener is required to work with. Since Gabbeh is not always going
to be run on a table or just on a pc.

6.4 Many tools

In the current version of this work, all the users can share only one tool at time. It means when
pen is selected, all the users at the table can only work with pen. And every token which
appears on the table functions as the pen. It is important to enable different users to use
different tools at the same time in such collaboration. One user might want to move a page
while the other one wants to create a new page. These different actions require different tool

16

to be associated to different tokens. A possible way of overcoming this limitation is to
introduce a toolbox for every token that appears on the sheet. Each token would have its own
toolbox and can select the tool it wants to use. Or all tokens can share same toolbox but each
token would have an attribute that stores the tool that token represents. However it is
important to identify which tools can not be used at same time before hand. It is mainly
because each tool is associated with a interpreter and it is important to know if two interpreter
can be used at the same time or not.

17

